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When investigating gas flows in Lava1 nozzles great difficulties are 
encountered in the construction of the flow in the neighborhood of the 
throat of the channel, where transition from subsonic to supersonic velo- 

cities takes place. In this region the gas motion is described by equa- 
tions of mixed elliptic-hyperbolic type, the general properties of which 
have not been studied sufficiently up to the present. As is known, the 
calculation of the supersonic part of the flow is substantially 
simplified in the particular case in which the sonic surface is a plane 
perpendicular to the streamlines crossing it. In this case we can investi- 
gate separately the subsonic flow region, which is described by equations 

of elliptic type, and the supersonic, in which the flow is described by 
equations of hyperbolic type. The sonic plane serves in this case also 
as a characteristic surface which divides the two regions of gas motion, 
A great number of papers [l-7 I have been devoted to the investigation 
of supersonic flows with a plane surface of transition through the speed 
of sound. 

In this paper we shall derive the general conditions for which the 
surface of transition from subsonic to supersonic velocities coincides 
with a characteristic surface of the equations of gasdynamics. The case 
under consideration is the only one for which the supersonic flow field 
may be calculated independently of its subsonic part, because the transonic 
mixed system of partial differential equations breaks down into purely 
hyperbolic and purely elliptic parts with the conditions prevailing on 
the surface of transition known. 

The system of equations of gasdynamics may be written in the form 

P = P (P, 4 
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where vi, p, p and s denote the velocity components of the flow, pres- 
sure, density and entropy at the point with Cartesian coordinates xi. 
‘ihe usual tensor notation for sumnation over the repeating indexes i, j 
is used, where i, j assume the values 1, 2, 3. 

IIhe equations which determine the C, characteristic surfaces X) = 

x&r za) of the system of equations (11, may be written as follows: 

where a = \/ (WW, is the velocity of sound and nj are the components 
of the normals to these surfaces, for which the following formulas are 
valid: 

?he system of equations of gasdynamics (11, reduced to the C, 
characteristics, will assume the form 

Equations (4) contain derivatives of the desired functions only along 
the corresponding characteristic surfaces. 

If the C, characteristic surface coincides with the sonic surface, 
then from Formula (2) there follows that it is orthogonal at any point 
to the intersecting streamline; therefore, for the vector component of 
the velocity along this surface we have 

nj = F anj (5) 

Using Equation (51, we obtain from Equations (4) 

Taking into account relations (3) we have finally 

a axs f 8x1 
G- 1/ 1 + (&Q / &q)2 + (&I+ / ih&)’ 
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Equation (6) is the equation of minimum surfaces. It expresses the 
fact that at any point the average curvature of the indicated surfaces 
must be zero. The theory of Equation (6) is closely connected with the 

theory of analytic functions of a complex vari- 
able and is well investigated in [8 1. Note 
that this equation was derived without making 
any assumptions whatever about the form of the 
equation of state of the gas or the irrotation- 
ality of the flow. The results obtained may be 
formulated in the form of the following theorem. 

Theorem. Let there be an arbitrary closed 
contour, any point of which is also a point of 
the surface of transition through the velocity 
of sound. Let this surface be at the same time 
a characteristic surface of the equations of 
gasdynamics. ‘lhen this surface will have a 
minimum area among all the surfaces which may 
be stretched over the given contour and, 
furthermore, the velocity vector will be ortho- 
gonal to it at each and every point. 

If the contour is formed by a plane curve, then the sonic surface 
passing through it will also be plane, and the tangents to the stream- 
lines at the points of intersection with it will be parallel to each 
other 1 l-7 1 . 

The sonic surface need not be bounded by a single contour. Cases where 
it is not are frequently encountered in applied problems. As an example 
of the case when two closed curves serve as the boundary of the surface 
of transition, we shall consider the outflow of a gas with sound velocity 
from a ring-shaped opening located in the peripheral part of an axi- 
synmetrical nozzle (see Figure). ‘Here the surface of transition is con- 
fined between two circles located in planes perpendicular to the axis of 
the channel which we shall make coincident with axis x3. Let the first 
circle be situated at a distance x3’. from the origin of coordinates and 
have a .radius r’, the second at a distance xsy.and have a radius r”: The 
equation of a minimum surface, passing through both circles, will have a 
form x 3 = x3(r), where r = d (xl2 + ~~~1. Therefore, from relations (6) 
it follows that 

dq 3 
rd$+ dr TX 

( > 

, dx3 
=o 

Interchanging dependent and independent variables in this equation, 
we have 
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'Ihe general solution of equation (7) may be represented in the form 

where c1 and c2 are arbitrary constants. They are determined by the rela- 
tions 

Q' - C* 
r? = cr co&------= 

Cl y 

?', = cICOSh~3" -ca 
Cl 

As seen from Equation (81, a sonic surface in this case is formed by 
the rotation of a catenary around the axis of the nozzle. It is important 
to note, however, that in this problem not necessarily one and only one 
extremum (8) passes through the two given points A’( x$,~ r’> and 
A?.(x,'<i r"). As the solution of the system of equations (9) shows, de- 
pending on the relative location of these points, there may be two, one 
or no such extrema. In the case when the extrema (8) may not be drawn 
through the points A’- and AT6 the discs perpendicular to the axis of the 
nozzle and located at a distance xa'.and x,'c.from the origin of a co- 
ordinate system serve as minimum surfaces. 

It is easily proved that in the analogous problem of the outflow of a 
gas from openings located symmetrically relative to the axis of a channel 
in the peripheral part of a plane-parallel nozzle, sonic surfaces will 
be planes connecting the edges of the openings. 'lhe solution of such a 
problem always exists and is unique. 
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